References

1.
Robertson LA, Kuenen JG. Nitrogen removal from water and waste. In: Fry S, editor. Microbial control of pollution. University of Cardiff: Society for General Microbiology; 1992. pp. 227–267. Available: https://repository.tudelft.nl/islandora/object/uuid%3A87a571e2-a46f-4472-92e0-11be9a6fce01
2.
Gayon U, Dupetit G. Recherches sur la reduction des nitrates par les infiniment petits. Mem Soc Sci Phys Nat Bordeaux. 1886;2: 201–307. Available: https://gallica.bnf.fr/ark:/12148/bpt6k9366473/f12.item
3.
Rasmussen RA, Khalil MA. Atmospheric trace gases: Trends and distributions over the last decade. Science (New York, NY). 1986;232: 1623–1624. doi:10.1126/science.232.4758.1623
4.
Hauck RD. NITROGEN FERTILIZER EFFECTS ON NITROGEN CYCLE PROCESSES. Ecological Bulletins. 1981; 551–562. Available: https://www.jstor.org/stable/45128688
5.
Hutchins SR. Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Applied and Environmental Microbiology. 1991;57: 2403–2407. doi:10.1128/AEM.57.8.2403-2407.1991
6.
Olson RA. Fertilizers for food production vs energy needs and environmental quality. Ecotoxicology and Environmental Safety. 1977;1: 311–326. doi:10.1016/0147-6513(77)90023-9
7.
Levallois P, Phaneuf D. [Contamination of drinking water by nitrates: Analysis of health risks]. Canadian Journal of Public Health = Revue Canadienne De Sante Publique. 1994;85: 192–196.
8.
Calmels S, Ohshima H, Henry Y, Bartsch H. Characterization of bacterial cytochrome cd(1)-nitrite reductase as one enzyme responsible for catalysis of nitrosation of secondary amines. Carcinogenesis. 1996;17: 533–536. doi:10.1093/carcin/17.3.533
9.
Bredt DS, Snyder SH. Nitric oxide: A physiologic messenger molecule. Annual Review of Biochemistry. 1994;63: 175–195. doi:10.1146/annurev.bi.63.070194.001135
10.
Shoun H, Tanimoto T. Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. The Journal of Biological Chemistry. 1991;266: 11078–11082. doi:10.1016/S0021-9258(18)99130-1
11.
Usuda K, Toritsuka N, Matsuo Y, Kim DH, Shoun H. Denitrification by the fungus Cylindrocarpon tonkinense: Anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Applied and Environmental Microbiology. 1995;61: 883–889. doi:10.1128/AEM.61.3.883-889.1995
12.
Kobayashi M, Matsuo Y, Takimoto A, Suzuki S, Maruo F, Shoun H. Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. The Journal of Biological Chemistry. 1996;271: 16263–16267. doi:10.1074/jbc.271.27.16263
13.
Kobayashi M, Shoun H. The copper-containing dissimilatory nitrite reductase involved in the denitrifying system of the fungus Fusarium oxysporum. The Journal of Biological Chemistry. 1995;270: 4146–4151. doi:10.1074/jbc.270.8.4146
14.
Nakahara K, Tanimoto T, Hatano K, Usuda K, Shoun H. Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. The Journal of Biological Chemistry. 1993;268: 8350–8355. doi:10.1016/S0021-9258(18)53102-1
15.
Enoch HG, Lester RL. The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli. Biochemical and Biophysical Research Communications. 1974;61: 1234–1241. doi:10.1016/s0006-291x(74)80416-x
16.
Berks BC, Richardson DJ, Reilly A, Willis AC, Ferguson SJ. The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. The Biochemical Journal. 1995;309 ( Pt 3): 983–992. doi:10.1042/bj3090983
17.
Richterich P, Lakey N, Gryan G, Jaehn L, Mintz L, Robison K, et al. U00008. Genbank. 1993. Available: https://www.ncbi.nlm.nih.gov/nuccore/u00008
18.
Godden JW, Turley S, Teller DC, Adman ET, Liu MY, Payne WJ, et al. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science (New York, NY). 1991;253: 438–442. doi:10.1126/science.1862344
19.
Kukimoto M, Nishiyama M, Murphy ME, Turley S, Adman ET, Horinouchi S, et al. X-ray structure and site-directed mutagenesis of a nitrite reductase from Alcaligenes faecalis S-6: Roles of two copper atoms in nitrite reduction. Biochemistry. 1994;33: 5246–5252. doi:10.1021/bi00183a030
20.
Zumft W. The denitrifying prokaryotes. 2nd ed. The Prokaryotes. 2nd ed. Springer-Verlag; 1992. pp. 554–582. Available: https://www.springer.com/gp/book/9781475721911
21.
John P, Whatley FR. Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature. 1975;254: 495–498. doi:10.1038/254495a0
22.
Trumpower BL. Cytochrome bc1 complexes of microorganisms. Microbiological Reviews. 1990;54: 101–129. doi:10.1128/mr.54.2.101-129.1990
23.
Ballard AL, Ferguson SJ. Respiratory nitrate reductase from Paracoccus denitrificans. Evidence for two b-type haems in the gamma subunit and properties of a water-soluble active enzyme containing alpha and beta subunits. European Journal of Biochemistry. 1988;174: 207–212. doi:10.1111/j.1432-1033.1988.tb14083.x
24.
Clegg RA. Purification and some properties of nitrate reductase (EC 1.7.99.4) from Escherichia coli K12. The Biochemical Journal. 1976;153: 533–541. doi:10.1042/bj1530533
25.
Ballard AL, Ferguson SJ. Molecular properties of the respiratory nitrate reductase of Paracoccus denitrificans. Biochemical Society Transactions. 1987;15: 937–938. doi:10.1042/bst0150937
26.
Demoss JA, Fan TY, Scott RH. Characterization of subunit structural alterations which occur during purification of nitrate reductase from Escherichia coli. Archives of Biochemistry and Biophysics. 1981;206: 54–64. doi:10.1016/0003-9861(81)90065-5
27.
Oppenheim DS, Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics. 1980;95: 785–795. doi:10.1093/genetics/95.4.785
28.
Berks BC, Page MD, Richardson DJ, Reilly A, Cavill A, Outen F, et al. Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: The integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Molecular Microbiology. 1995;15: 319–331. doi:10.1111/j.1365-2958.1995.tb02246.x
29.
Johnson MK, Bennett DE, Morningstar JE, Adams MW, Mortenson LE. The iron-sulfur cluster composition of Escherichia coli nitrate reductase. The Journal of Biological Chemistry. 1985;260: 5456–5463. doi:10.1016/S0021-9258(18)89044-5
30.
Wootton JC, Nicolson RE, Mark Cock J, Walters DE, Burke JF, Doyle WA, et al. Enzymes depending on the pterin molybdenum cofactor: Sequence families, spectroscopic properties of molybdenum and possible cofactor-binding domains. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1991;1057: 157–185. doi:10.1016/S0005-2728(05)80100-8
31.
Berks BC, Ferguson SJ, Moir JW, Richardson DJ. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochimica Et Biophysica Acta. 1995;1232: 97–173. doi:10.1016/0005-2728(95)00092-5
32.
Craig JA, Holm RH. Reduction of nitrate to nitrite by molybdenum-mediated atom transfer: A nitrate reductase analog reaction system. Journal of the American Chemical Society. 1989;111: 2111–2115. doi:10.1021/ja00188a026
33.
Cramer S. Molybdenum enzymes: A survey of structural information from EXAFS and EPR spectroscopy. Adv Inorg Bioinorg Mech. 1983; 259–316.
34.
Bellion E. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life (da Silva, J. J. R. Frausto; Williams, R. J. P.). Journal of Chemical Education. 1992;69: A326. doi:10.1021/ed069pA326.1
35.
Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC. Crystal structure of DMSO reductase: Redox-linked changes in molybdopterin coordination. Science (New York, NY). 1996;272: 1615–1621. doi:10.1126/science.272.5268.1615
36.
Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD. Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science (New York, NY). 1997;275: 1305–1308. doi:10.1126/science.275.5304.1305
37.
Sodergren EJ, DeMoss JA. narI region of the Escherichia coli nitrate reductase (nar) operon contains two genes. Journal of Bacteriology. 1988;170: 1721–1729. doi:10.1128/jb.170.4.1721-1729.1988
38.
Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V, Chippaux M. Nitrate reductases of Escherichia coli: Sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Molecular & general genetics: MGG. 1990;222: 104–111. doi:10.1007/BF00283030
39.
Nohno T, Noji S, Taniguchi S, Saito T. The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic Acids Research. 1989;17: 2947–2957. doi:10.1093/nar/17.8.2947
40.
Rowe JJ, Ubbink-Kok T, Molenaar D, Konings WN, Driessen AJ. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli. Molecular Microbiology. 1994;12: 579–586. doi:10.1111/j.1365-2958.1994.tb01044.x
41.
DeMoss JA, Hsu PY. NarK enhances nitrate uptake and nitrite excretion in Escherichia coli. Journal of Bacteriology. 1991;173: 3303–3310. doi:10.1128/jb.173.11.3303-3310.1991
42.
Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S, Harborne N, et al. Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. European Journal of Biochemistry. 1990;191: 315–323. doi:10.1111/j.1432-1033.1990.tb19125.x
43.
Kajie S, Anraku Y. Purification of a hexaheme cytochrome c552 from Escherichia coli K 12 and its properties as a nitrite reductase. European Journal of Biochemistry. 1986;154: 457–463. doi:10.1111/j.1432-1033.1986.tb09419.x
44.
Omata T. Structure, function and regulation of the nitrate transport system of the cyanobacterium Synechococcus sp. PCC7942. Plant & Cell Physiology. 1995;36: 207–213. doi:10.1093/oxfordjournals.pcp.a078751
45.
Rodríguez R, Lara C, Guerrero MG. Nitrate transport in the cyanobacterium Anacystis nidulans R2. Kinetic and energetic aspects. The Biochemical Journal. 1992;282 ( Pt 3): 639–643. doi:10.1042/bj2820639
46.
McEwan AG, Wetzstein HG, Meyer O, Jackson JB, Ferguson SJ. The periplasmic nitrate reductase of Rhodobacter capsulatus; purification, characterisation and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Archives of Microbiology. 1987;147: 340–345. doi:10.1007/BF00406130
47.
Berks BC, Richardson DJ, Robinson C, Reilly A, Aplin RT, Ferguson SJ. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. European Journal of Biochemistry. 1994;220: 117–124. doi:10.1111/j.1432-1033.1994.tb18605.x
48.
Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S, Friedrich B. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. Journal of Bacteriology. 1993;175: 5867–5876. doi:10.1128/jb.175.18.5867-5876.1993
49.
Reyes F, Roldán MD, Klipp W, Castillo F, Moreno-Vivián C. Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: Structural and functional differences among prokaryotic nitrate reductases. Molecular Microbiology. 1996;19: 1307–1318. doi:10.1111/j.1365-2958.1996.tb02475.x
50.
Carter JP, Hsaio YH, Spiro S, Richardson DJ. Soil and sediment bacteria capable of aerobic nitrate respiration. Applied and Environmental Microbiology. 1995;61: 2852–2858. doi:10.1128/AEM.61.8.2852-2858.1995
51.
Breton J, Berks BC, Reilly A, Thomson AJ, Ferguson SJ, Richardson DJ. Characterization of the paramagnetic iron-containing redox centres of Thiosphaera pantotropha periplasmic nitrate reductase. FEBS letters. 1994;345: 76–80. doi:10.1016/0014-5793(94)00445-5
52.
Thöny-Meyer L, Loferer H, Ritz D, Hennecke H. Bacterial genes and proteins involved in the biogenesis of c-type cytochromes and terminal oxidases. Biochimica Et Biophysica Acta. 1994;1187: 260–263. doi:10.1016/0005-2728(94)90123-6
53.
Stouthamer AH. Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Antonie Van Leeuwenhoek. 1992;61: 1–33. doi:10.1007/BF00572119
54.
Noji S, Taniguchi S. Molecular oxygen controls nitrate transport of Escherichia coli nitrate-respiring cells. The Journal of Biological Chemistry. 1987;262: 9441–9443. Available: https://www.jbc.org/article/S0021-9258(18)47952-5/pdf
55.
Robertson LA, Dalsgaard T, Revsbech N-P, Kuenen JG. Confirmation of “aerobic denitrification” in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiology Ecology. 1995;18: 113–120. doi:10.1111/j.1574-6941.1995.tb00168.x
56.
Baumann B, Snozzi M, Zehnder AJ, Van Der Meer JR. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. Journal of Bacteriology. 1996;178: 4367–4374. doi:10.1128/jb.178.15.4367-4374.1996
57.
Richardson DJ, Ferguson SJ. The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha. Archives of Microbiology. 1992;157: 535–537. doi:10.1007/BF00276774
58.
Richardson DJ, King GF, Kelly DJ, McEwan AG, Ferguson SJ, Jackson JB. The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Archives of Microbiology. 1988;150: 131–137. doi:10.1007/BF00425152
59.
Averill BA. Dissimilatory Nitrite and Nitric Oxide Reductases. Chemical Reviews. 1996;96: 2951–2964. doi:10.1021/cr950056p
60.
Sann R, Kostka S, Friedrich B. A cytochrome cd1-type nitrite reductase mediates the first step of denitrification in Alcaligenes eutrophus. Archives of Microbiology. 1994;161: 453–459. doi:10.1007/BF00307765
61.
Iwasaki H, Matsubara T. Cytochrome c-557 (551) and cytochrome cd of Alcaligenes faecalis. Journal of Biochemistry. 1971;69: 847–857. doi:10.1093/oxfordjournals.jbchem.a129536
62.
Kakutani T, Watanabe H, Arima K, Beppu T. Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis strain S-6. Journal of Biochemistry. 1981;89: 453–461. doi:10.1093/oxfordjournals.jbchem.a133220
63.
Glockner AB, Jüngst A, Zumft WG. Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd1-free background (NirS-) of Pseudomonas stutzeri. Archives of Microbiology. 1993;160: 18–26. doi:10.1007/BF00258141
64.
Iwasaki H, Matsubara T. A nitrite reductase from Achromobacter cycloclastes. Journal of Biochemistry. 1972;71: 645–652. Available: https://www.jstage.jst.go.jp/article/biochemistry1922/71/4/71_4_645/_article
65.
Zumft WG, Gotzmann DJ, Kroneck PM. Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens. European Journal of Biochemistry. 1987;168: 301–307. doi:10.1111/j.1432-1033.1987.tb13421.x
66.
Denariaz G, Payne WJ, LeGall J. The denitrifying nitrite reductase of Bacillus halodenitrificans. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1991;1056: 225–232. doi:10.1016/S0005-2728(05)80053-2
67.
Han J, Loehr TM, Lu Y, Valentine JS, Averill BA, Sanders-Loehr J. Resonance Raman excitation profiles indicate multiple Cys->Cu charge transfer transitions in type 1 copper proteins. Journal of the American Chemical Society. 1993;115: 4256–4263. doi:10.1021/ja00063a048
68.
Kukimoto M, Nishiyama M, Tanokura M, Adman ET, Horinouchi S. Studies on protein-protein interaction between copper-containing nitrite reductase and pseudoazurin from Alcaligenes faecalis S-6. The Journal of Biological Chemistry. 1996;271: 13680–13683. doi:10.1074/jbc.271.23.13680
69.
Strange RW, Dodd FE, Abraham ZH, Grossmann JG, Brüser T, Eady RR, et al. The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase. Nature Structural Biology. 1995;2: 287–292. doi:10.1038/nsb0495-287
70.
Hulse CL, Tiedje JM, Averill BA. Evidence for a copper-nitrosyl intermediate in denitrification by the copper-containing nitrite reductase of Achromobacter cycloclastes. Journal of the American Chemical Society. 1989;111: 2322–2323. doi:10.1021/ja00188a067
71.
Jackson MA, Tiedje JM, Averill BA. Evidence for a NO-rebound mechanism for production of N2O from nitrite by the copper-containing nitrite reductase from Achromobacter cycloclastes. FEBS letters. 1991;291: 41–44. doi:10.1016/0014-5793(91)81099-t
72.
Goretski J, Hollocher TC. Trapping of nitric oxide produced during denitrification by extracellular hemoglobin. The Journal of Biological Chemistry. 1988;263: 2316–2323. doi:10.1016/S0021-9258(18)69208-7
73.
Zumft WG, Döhler K, Körner H, Löchelt S, Viebrock A, Frunzke K. Defects in cytochrome cd1-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri. Archives of Microbiology. 1988;149: 492–498. doi:10.1007/BF00446750
74.
Carr GJ, Ferguson SJ. The nitric oxide reductase of Paracoccus denitrificans. The Biochemical Journal. 1990;269: 423–429. doi:10.1042/bj2690423
75.
Jones AM, Hollocher TC. Nitric oxide reductase of Achromobacter cycloclastes. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1993;1144: 359–366. doi:10.1016/0005-2728(93)90121-U
76.
Heiss B, Frunzke K, Zumft WG. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. Journal of Bacteriology. 1989;171: 3288–3297. doi:10.1128/jb.171.6.3288-3297.1989
77.
Goretski J, Zafiriou OC, Hollocher TC. Steady-state nitric oxide concentrations during denitrification. The Journal of Biological Chemistry. 1990;265: 11535–11538. doi:10.1016/S0021-9258(19)38430-3
78.
Kastrau DH, Heiss B, Kroneck PM, Zumft WG. Nitric oxide reductase from Pseudomonas stutzeri, a novel cytochrome bc complex. Phospholipid requirement, electron paramagnetic resonance and redox properties. European Journal of Biochemistry. 1994;222: 293–303. doi:10.1111/j.1432-1033.1994.tb18868.x
79.
Fujiwara T, Fukumori Y. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. Journal of Bacteriology. 1996;178: 1866–1871. doi:10.1128/jb.178.7.1866-1871.1996
80.
Girsch P, Vries S de. Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans. Biochimica Et Biophysica Acta. 1997;1318: 202–216. doi:10.1016/s0005-2728(96)00138-7
81.
Oost J van der, Boer AP de, Gier JW de, Zumft WG, Stouthamer AH, Spanning RJ van. The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS microbiology letters. 1994;121: 1–9. doi:10.1111/j.1574-6968.1994.tb07067.x
82.
Iwata S, Ostermeier C, Ludwig B, Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995;376: 660–669. doi:10.1038/376660a0
83.
Saraste M, Castresana J. Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS letters. 1994;341: 1–4. doi:10.1016/0014-5793(94)80228-9
84.
Zhao XJ, Sampath V, Caughey WS. Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide. Biochemical and Biophysical Research Communications. 1995;212: 1054–1060. doi:10.1006/bbrc.1995.2076
85.
Coyle CL, Zumft WG, Kroneck PM, Körner H, Jakob W. Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. European Journal of Biochemistry. 1985;153: 459–467. doi:10.1111/j.1432-1033.1985.tb09324.x
86.
Snyder SW, Hollocher TC. Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans. The Journal of Biological Chemistry. 1987;262: 6515–6525. Available: https://www.jbc.org/article/S0021-9258(18)48272-5/pdf
87.
SooHoo CK, Hollocher TC. Purification and characterization of nitrous oxide reductase from Pseudomonas aeruginosa strain P2. The Journal of Biological Chemistry. 1991;266: 2203–2209. doi:10.1016/S0021-9258(18)52229-8
88.
Matsubara T, Iwasaki H. A new-type of copper-protein from Alcaligenes faecalis. Journal of Biochemistry. 1972;71: 747–750. doi:10.1093/oxfordjournals.jbchem.a129822
89.
Kelly M, Lappalainen P, Talbo G, Haltia T, Oost J van der, Saraste M. Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center. The Journal of Biological Chemistry. 1993;268: 16781–16787. Available: https://www.jbc.org/article/S0021-9258(19)85484-4/pdf
90.
Zumft WG, Dreusch A, Löchelt S, Cuypers H, Friedrich B, Schneider B. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. European Journal of Biochemistry. 1992;208: 31–40. doi:10.1111/j.1432-1033.1992.tb17156.x
91.
Farrar JA, Thomson AJ, Cheesman MR, Dooley DM, Zumft WG. A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri). Evidence from optical, EPR and MCD spectroscopy. FEBS letters. 1991;294: 11–15. doi:10.1016/0014-5793(91)81331-2
92.
Riester J, Zumft WG, Kroneck PM. Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. European Journal of Biochemistry. 1989;178: 751–762. doi:10.1111/j.1432-1033.1989.tb14506.x
93.
Kristjansson JK, Hollocher TC. First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization. The Journal of Biological Chemistry. 1980;255: 704–707. Available: https://www.jbc.org/article/S0021-9258(19)86236-1/pdf
94.
Berks BC, Baratta D, Richardson J, Ferguson SJ. Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. European Journal of Biochemistry. 1993;212: 467–476. doi:10.1111/j.1432-1033.1993.tb17683.x
95.
Braun C, Zumft WG. The structural genes of the nitric oxide reductase complex from Pseudomonas stutzeri are part of a 30-kilobase gene cluster for denitrification. Journal of Bacteriology. 1992;174: 2394–2397. doi:10.1128/jb.174.7.2394-2397.1992
96.
Hoeren FU, Berks BC, Ferguson SJ, McCarthy JE. Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. European Journal of Biochemistry. 1993;218: 49–57. doi:10.1111/j.1432-1033.1993.tb18350.x
97.
Heijne G von. Signal sequences. The limits of variation. Journal of Molecular Biology. 1985;184: 99–105. doi:10.1016/0022-2836(85)90046-4
98.
Berks BC. A common export pathway for proteins binding complex redox cofactors? Molecular Microbiology. 1996;22: 393–404. doi:10.1046/j.1365-2958.1996.00114.x
99.
Ambler R. The structure and classification of cytochromes c. From Cyclotrons To Cytochromes: Essays in Molecular Biology and Chemistry. Saint Louis: Elsevier Science; 1980. Available: http://qut.eblib.com.au/patron/FullRecord.aspx?p=1183623
100.
Hall J, Zha XH, Durham B, O’Brien P, Vieira B, Davis D, et al. Reaction of cytochromes c and c2 with the Rhodobacter sphaeroides reaction center involves the heme crevice domain. Biochemistry. 1987;26: 4494–4500. doi:10.1021/bi00388a048
101.
Moir JW, Baratta D, Richardson DJ, Ferguson SJ. The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. European Journal of Biochemistry. 1993;212: 377–385. doi:10.1111/j.1432-1033.1993.tb17672.x
102.
Parr SR, Barber D, Greenwood C. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa. The Biochemical Journal. 1976;157: 423–430. doi:10.1042/bj1570423
103.
Husain M, Davidson VL, Smith AJ. Properties of Paracoccus denitrificans amicyanin. Biochemistry. 1986;25: 2431–2436. doi:10.1021/bi00357a020
104.
Kamp M van de, Silvestrini MC, Brunori M, Van Beeumen J, Hali FC, Canters GW. Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome C551 and nitrite reductase. European Journal of Biochemistry. 1990;194: 109–118. doi:10.1111/j.1432-1033.1990.tb19434.x
105.
Williams PA, Fülöp V, Leung YC, Chan C, Moir JW, Howlett G, et al. Pseudospecific docking surfaces on electron transfer proteins as illustrated by pseudoazurin, cytochrome c550 and cytochrome cd1 nitrite reductase. Nature Structural Biology. 1995;2: 975–982. doi:10.1038/nsb1195-975
106.
Moir JWB, Ferguson SJ. Properties of a Paracoccus denitrificans mutant deleted in cytochrome c550 indicate that a copper protein can substitute for this cytochrome in electron transport to nitrite, nitric oxide and nitrous oxide. Microbiology. 1994;140: 389–397. doi:10.1099/13500872-140-2-389
107.
Jenney FE, Daldal F. A novel membrane-associated c-type cytochrome, cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. The EMBO journal. 1993;12: 1283–1292. doi:10.1002/j.1460-2075.1993.tb05773.x
108.
Husain M, Davidson VL. Characterization of two inducible periplasmic c-type cytochromes from Paracoccus denitrificans. The Journal of Biological Chemistry. 1986;261: 8577–8580. doi:10.1016/S0021-9258(19)84415-0
109.
Horio T. TERMINAL OXIDATION SYSTEM IN BACTERIA. The Journal of Biochemistry. 1958;45: 195–205. doi:10.1093/oxfordjournals.jbchem.a126857
110.
Yamanaka T, Kijimoto S, Okunuki K. Biological significance of Pseudomonas cytochrome oxidase in Pseudomonas aeruginosa. Journal of Biochemistry. 1963;53: 416–421. doi:10.1093/oxfordjournals.jbchem.a127716
111.
Timkovich R, Robinson MK. Evidence for water as the product for oxygen reduction by cytochrome cd. Biochemical and Biophysical Research Communications. 1979;88: 649–655. doi:10.1016/0006-291x(79)92097-7
112.
Lam Y, Nicholas DJ. A nitrite reductase with cytochrome oxidase activity from Micrococcus denitrificans. Biochimica Et Biophysica Acta. 1969;180: 459–472. doi:10.1016/0005-2728(69)90025-5
113.
Sawhney V, Nicholas DJD. Sulphide-linked Nitrite Reductase from Thiobacillus denitrificans with Cytochrome Oxidase Activity: Purification and Properties. Journal of General Microbiology. 1978;106: 119–128. doi:10.1099/00221287-106-1-119
114.
Yamazaki T, Oyanagi H, Fujiwara T, Fukumori Y. Nitrite Reductase from the Magnetotactic Bacterium Magnetospirillum magnetotacticum. A Novel Cytochrome cd1 with Fe(II): Nitrite Oxidoreductase Activity. European Journal of Biochemistry. 1995;233: 665–671. doi:10.1111/j.1432-1033.1995.665_2.x
115.
Doi M, Shioi Y, Morita M, Takamiya K. Two types of cytochrome cd1 in the aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. European Journal of Biochemistry. 1989;184: 521–527. doi:10.1111/j.1432-1033.1989.tb15045.x
116.
Kuronen T, Ellfolk N. A new purification procedure and molecular properties of Pseudomonas cytochrome oxidase. Biochimica Et Biophysica Acta. 1972;275: 308–318. doi:10.1016/0005-2728(72)90212-5
117.
Chang CK, Timkovich R, Wu W. Evidence that heme d1 is a 1,3-porphyrindione. Biochemistry. 1986;25: 8447–8453. doi:10.1021/bi00374a019
118.
Hill KE, Wharton DC. Reconstitution of the apoenzyme of cytochrome oxidase from Pseudomonas aeruginosa with heme d1 and other heme groups. The Journal of Biological Chemistry. 1978;253: 489–495. doi:10.1016/S0021-9258(17)38236-4
119.
Walsh TA, Johnson MK, Greenwood C, Barber D, Springall JP, Thomson AJ. Some magnetic properties of Pseudomonas cytochrome oxidase. The Biochemical Journal. 1979;177: 29–39. doi:10.1042/bj1770029
120.
Walsh TA, Johnson MK, Thomson AJ, Barber D, Greenwood C. The characterization and magnetic properties of the azide and imidazole derivatives of Pseudomonas nitrite reductase. Journal of Inorganic Biochemistry. 1981;14: 1–14. doi:10.1016/s0162-0134(00)80010-0
121.
Barber D, Parr SR, Greenwood C. The reactions of Pseudomonas cytochrome c-551 oxidase with potassium cyanide. The Biochemical Journal. 1978;175: 239–249. doi:10.1042/bj1750239
122.
Parr SR, Wilson MT, Greenwood C. The reaction of Pseudomonas aeruginosa cytochrome c oxidase with carbon monoxide. The Biochemical Journal. 1975;151: 51–59. doi:10.1042/bj1510051
123.
Gilmour R, Goodhew CF, Pettigrew GW, Prazeres S, Moura JJ, Moura I. The kinetics of the oxidation of cytochrome c by Paracoccus cytochrome c peroxidase. The Biochemical Journal. 1994;300 ( Pt 3): 907–914. doi:10.1042/bj3000907
124.
Sutherland J, Greenwood C, Peterson J, Thomson AJ. An investigation of the ligand-binding properties of Pseudomonas aeruginosa nitrite reductase. The Biochemical Journal. 1986;233: 893–898. doi:10.1042/bj2330893
125.
Cheesman MR, Ferguson SJ, Moir JW, Richardson DJ, Zumft WG, Thomson AJ. Two enzymes with a common function but different heme ligands in the forms as isolated. Optical and magnetic properties of the heme groups in the oxidized forms of nitrite reductase, cytochrome cd1, from Pseudomonas stutzeri and Thiosphaera pantotropha. Biochemistry. 1997;36: 16267–16276. doi:10.1021/bi971677a
126.
Huynh BH, Lui MC, Moura JJ, Moura I, Ljungdahl PO, Münck E, et al. Mössbauer and EPR studies on nitrite reductase from Thiobacillus denitrificans. The Journal of Biological Chemistry. 1982;257: 9576–9581. doi:10.1016/S0021-9258(18)34110-3
127.
Fülöp V, Moir JW, Ferguson SJ, Hajdu J. The anatomy of a bifunctional enzyme: Structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell. 1995;81: 369–377. doi:10.1016/0092-8674(95)90390-9
128.
Horio T, Kamen MD, De Klerk H. Relative oxidation-reduction potentials of heme groups in two soluble doubleheme proteins. The Journal of Biological Chemistry. 1961;236: 2783–2787. doi:10.1016/S0021-9258(19)61737-0
129.
Kamen MD, Horio T. Bacterial cytochromes. I. Structural aspects. Annual Review of Biochemistry. 1970;39: 673–700. doi:10.1146/annurev.bi.39.070170.003325
130.
Wharton DC, Gudat JC, Gibson QH. Cytochrome oxidase from Pseudomonas aeruginosa. II. Reaction with copper protein. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1973;292: 611–620. doi:10.1016/0005-2728(73)90009-1
131.
Shimada H, Orii Y. Oxidation-reduction behavior of the heme c and heme d moieties of Pseudomonas aeruginosa nitrite reductase and the formation of an oxygenated intermediate at heme d1. Journal of Biochemistry. 1976;80: 135–140. doi:10.1093/oxfordjournals.jbchem.a131245
132.
Blatt Y, Pecht I. Allosteric cooperative interactions among redox sites of Pseudomonas cytochrome oxidase. Biochemistry. 1979;18: 2917–2922. doi:10.1021/bi00580a037
133.
Schichman SA, Gray HB. Kinetics of the anaerobic reduction of ferricytochrome cd1 by Fe(EDTA)2-. Evidence for bimolecular and intramolecular electron transfers to the d1 hemes. Journal of the American Chemical Society. 1981;103: 7794–7795. doi:10.1021/ja00416a020
134.
Silvestrini MC, Tordi MG, Colosimo A, Antonini E, Brunori M. The kinetics of electron transfer between pseudomonas aeruginosa cytochrome c-551 and its oxidase. The Biochemical Journal. 1982;203: 445–451. doi:10.1042/bj2030445
135.
Carson SD, Ching YC, Wells CA, Wharton DC, Ondrias MR. Variations in the oxidation-reduction behavior of liganded species of Pseudomonas cytochrome oxidase. Biochemistry. 1986;25: 787–790. doi:10.1021/bi00352a008
136.
Besson S, Carneiro C, Moura JJ, Moura I, Fauque G. A cytochrome cd1-type nitrite reductase isolated from the marine denitrifier Pseudomonas nautica 617: Purification and characterization. Anaerobe. 1995;1: 219–226. doi:10.1006/anae.1995.1021
137.
Silvestrini MC, Galeotti CL, Gervais M, Schininà E, Barra D, Bossa F, et al. Nitrite reductase from Pseudomonas aeruginosa: Sequence of the gene and the protein. FEBS letters. 1989;254: 33–38. doi:10.1016/0014-5793(89)81004-x
138.
Jüngst A, Wakabayashi S, Matsubara H, Zumft WG. The nirSTBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS letters. 1991;279: 205–209. doi:10.1016/0014-5793(91)80150-2
139.
Smith GB, Tiedje JM. Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Applied and Environmental Microbiology. 1992;58: 376–384. doi:10.1128/AEM.58.1.376-384.1992
140.
Ohshima T, Sugiyama M, Uozumi N, Iijima S, Kobayashi T. Cloning and sequencing of a gene encoding nitrite reductase from Paracoccus denitrificans and expression of the gene in Escherichia coli. Journal of Fermentation and Bioengineering. 1993;76: 82–88. doi:10.1016/0922-338X(93)90061-C
141.
Boer AP de, Reijnders WN, Kuenen JG, Stouthamer AH, Spanning RJ van. Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Antonie Van Leeuwenhoek. 1994;66: 111–127. doi:10.1007/BF00871635
142.
Rees E, Siddiqui RA, Köster F, Schneider B, Friedrich B. Structural gene (nirS) for the cytochrome cd1 nitrite reductase of Alcaligenes eutrophus H16. Applied and Environmental Microbiology. 1997;63: 800–802. doi:10.1128/AEM.63.2.800-802.1997
143.
Horowitz PM, Muhoberac BB, Falksen K, Wharton DC. Controlled proteolysis by subtilisin as a probe for cyanide-induced conformational changes in Pseudomonas cytochrome oxidase. The Journal of Biological Chemistry. 1982;257: 2140–2143. Available: https://www.jbc.org/article/S0021-9258(18)34895-6/pdf
144.
Tordi MG, Silvestrini MC, Colosimo A, Provencher S, Brunori M. Circular-dichroic properties and secondary structure of Pseudomonas aeruginosa soluble cytochrome c oxidase. The Biochemical Journal. 1984;218: 907–912. doi:10.1042/bj2180907
145.
Berger H, Wharton DC. Small-angle X-ray scattering studies of oxidized and reduced cytochrome oxidase from Pseudomonas aeruginosa. Biochimica Et Biophysica Acta. 1980;622: 355–359. doi:10.1016/0005-2795(80)90047-1
146.
Mitra S, Donovan JW, Bersohn R. Heat stabilization dependence on redox state of cytochrome cd1 oxidase from Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications. 1981;98: 140–146. doi:10.1016/0006-291x(81)91880-5
147.
Akey CW, Moffat K, Wharton DC, Edelstein SJ. Characterization of crystals of a cytochrome oxidase (nitrite reductase) from Pseudomonas aeruginosa by x-ray diffraction and electron microscopy. Journal of Molecular Biology. 1980;136: 19–43. doi:10.1016/0022-2836(80)90364-2
148.
Mitra S, Bersohn R. Location of the heme groups in cytochrome cd1 oxidase from Pseudomonas aeruginosa. Biochemistry. 1980;19: 3200–3203. doi:10.1021/bi00555a015
149.
Yamanaka T, Okunuki K. Crystalline Pseudomonas cytochrome oxidase. I. Enzymic properties with special reference to the biological specificity. Biochimica Et Biophysica Acta. 1963;67: 379–393. doi:10.1016/0006-3002(63)91844-4
150.
Tegoni M, Silvestrini MC, Lamzin VS, Brunori M, Cambillau C. Crystallization and preliminary X-ray analysis of a new crystal form of nitrite reductase from Pseudomonas aeruginosa. Journal of Molecular Biology. 1994;243: 347–350. doi:10.1006/jmbi.1994.1659
151.
Moore GR, Pettigrew GW. Cytochromes C Evolutionary, Structural and Physicochemical Aspects. Berlin, Heidelberg: Springer Berlin / Heidelberg; 1990. Available: http://public.eblib.com/choice/PublicFullRecord.aspx?p=6499030
152.
Xia ZX, Dai WW, Xiong JP, Hao ZP, Davidson VL, White S, et al. The three-dimensional structures of methanol dehydrogenase from two methylotrophic bacteria at 2.6-A resolution. The Journal of Biological Chemistry. 1992;267: 22289–22297. Available: https://www.jbc.org/article/S0021-9258(18)41668-7/pdf
153.
Vellieux FM, Huitema F, Groendijk H, Kalk KH, Jzn JF, Jongejan JA, et al. Structure of quinoprotein methylamine dehydrogenase at 2.25 A resolution. The EMBO journal. 1989;8: 2171–2178. doi:10.1002/j.1460-2075.1989.tb08339.x
154.
Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature. 1983;303: 35–40. doi:10.1038/303035a0
155.
Dhesi R, Timkovich R. Patterns of product inhibition for bacterial nitrite reductase. Biochemical and Biophysical Research Communications. 1984;123: 966–972. doi:10.1016/s0006-291x(84)80228-4
156.
Robinson MK, Martinkus K, Kennelly PJ, Timkovich R. Implications of the integrated rate law for the reactions of Paracoccus denitrificans nitrite reductase. Biochemistry. 1979;18: 3921–3926. doi:10.1021/bi00585a012
157.
Parr SR, Barber D, Greenwood C, Brunori M. The electron-transfer reaction between azurin and the cytochrome c oxidase from Pseudomonas aeruginosa. The Biochemical Journal. 1977;167: 447–455. doi:10.1042/bj1670447
158.
Kim CH, Hollocher TC. Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome c,d1). The Journal of Biological Chemistry. 1984;259: 2092–2099. Available: https://www.jbc.org/article/S0021-9258(17)43321-7/pdf
159.
Kim CH, Hollocher TC. 15N tracer studies on the reduction of nitrite by the purified dissimilatory nitrite reductase of Pseudomonas aeruginosa. Evidence for direct production of N2O without free NO as an intermediate. The Journal of Biological Chemistry. 1983;258: 4861–4863. doi:10.1016/S0021-9258(18)32505-5
160.
Carr GJ, Page MD, Ferguson SJ. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. European Journal of Biochemistry. 1989;179: 683–692. doi:10.1111/j.1432-1033.1989.tb14601.x
161.
Wang Y, Averill BA. Direct Observation by FTIR Spectroscopy of the Ferrous HemeNO \(^{\textrm{+}}\) Intermediate in Reduction of Nitrite by a Dissimilatory Heme cd \(_{\textrm{1}}\) Nitrite Reductase. Journal of the American Chemical Society. 1996;118: 3972–3973. doi:10.1021/ja9538647
162.
Silvestrini MC, Tordi MG, Musci G, Brunori M. The reaction of Pseudomonas nitrite reductase and nitrite. A stopped-flow and EPR study. The Journal of Biological Chemistry. 1990;265: 11783–11787. doi:10.1016/S0021-9258(19)38466-2
163.
LeGall J, Payne WJ, Morgan TV, DerVartanian D. On the purification of nitrite reductase from Thiobacillus denitrificans and its reaction with nitrite under reducing conditions. Biochemical and Biophysical Research Communications. 1979;87: 355–362. doi:10.1016/0006-291x(79)91804-7
164.
Traylor TG, Sharma VS. Why NO? Biochemistry. 1992;31: 2847–2849. doi:10.1021/bi00126a001
165.
Kobayashi K, Koppenhöfer A, Ferguson SJ, Tagawa S. Pulse radiolysis studies on cytochrome cd1 nitrite reductase from Thiosphaera pantotropha: Evidence for a fast intramolecular electron transfer from c-heme to d1-heme. Biochemistry. 1997;36: 13611–13616. doi:10.1021/bi971045o
166.
Williams P. Time-resolved structural studies on macromolecules. PhD thesis, University of Oxford. 1996. Available: https://www.worldcat.org/title/time-resolved-structural-studies-on-macromolecules/oclc/43530285
167.
Zumft WG, Döhler K, Körner H. Isolation and characterization of transposon Tn5-induced mutants of Pseudomonas perfectomarina defective in nitrous oxide respiration. Journal of Bacteriology. 1985;163: 918–924. doi:10.1128/JB.163.3.918-924.1985
168.
Zumft WG, Körner H. Enzyme diversity and mosaic gene organization in denitrification. Antonie Van Leeuwenhoek. 1997;71: 43–58. doi:10.1023/a:1000112008026
169.
Boer T de. Regulation of denitrification in Paracoccus denitrificans. PhD thesis, VU Amsterdam. 1996. Available: https://research.vu.nl/en/publications/regulation-of-denitrification-in-paracoccus-denitrificans
170.
Arai H, Sanbongi Y, Igarashi Y, Kodama T. Cloning and sequencing of the gene encoding cytochrome c-551 from Pseudomonas aeruginosa. FEBS letters. 1990;261: 196–198. doi:10.1016/0014-5793(90)80669-a
171.
Jüngst A, Zumft WG. Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis of nirQ, a novel gene in the denitrification gene cluster of Pseudomonas stutzeri. FEBS letters. 1992;314: 308–314. doi:10.1016/0014-5793(92)81495-8
172.
Boer AP de, Oost J van der, Reijnders WN, Westerhoff HV, Stouthamer AH, Spanning RJ van. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. European Journal of Biochemistry. 1996;242: 592–600. doi:10.1111/j.1432-1033.1996.0592r.x
173.
Cuypers H, Viebrock-Sambale A, Zumft WG. NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifying Pseudomonas stutzeri. Journal of Bacteriology. 1992;174: 5332–5339. doi:10.1128/jb.174.16.5332-5339.1992
174.
Glockner AB, Zumft WG. Sequence analysis of an internal 9.72-kb segment from the 30-kb denitrification gene cluster of Pseudomonas stutzeri. Biochimica Et Biophysica Acta. 1996;1277: 6–12. doi:10.1016/s0005-2728(96)00108-9
175.
Mushegian AR, Koonin EV. Gene order is not conserved in bacterial evolution. Trends in genetics: TIG. 1996;12: 289–290. doi:10.1016/0168-9525(96)20006-x
176.
Lambden PR, Guest JR. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. Journal of General Microbiology. 1976;97: 145–160. doi:10.1099/00221287-97-2-145
177.
Shaw DJ, Rice DW, Guest JR. Homology between CAP and Fnr, a regulator of anaerobic respiration in Escherichia coli. Journal of Molecular Biology. 1983;166: 241–247. doi:10.1016/s0022-2836(83)80011-4
178.
Green J, Bennett B, Jordan P, Ralph ET, Thomson AJ, Guest JR. Reconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro. The Biochemical Journal. 1996;316 ( Pt 3): 887–892. doi:10.1042/bj3160887
179.
Khoroshilova N, Beinert H, Kiley PJ. Association of a polynuclear iron-sulfur center with a mutant FNR protein enhances DNA binding. Proceedings of the National Academy of Sciences of the United States of America. 1995;92: 2499–2503. doi:10.1073/pnas.92.7.2499
180.
Becker S, Holighaus G, Gabrielczyk T, Unden G. O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli. Journal of Bacteriology. 1996;178: 4515–4521. doi:10.1128/jb.178.15.4515-4521.1996
181.
Unden G, Trageser M, Duchêne A. Effect of positive redox potentials (greater than +400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coli. Molecular Microbiology. 1990;4: 315–319. doi:10.1111/j.1365-2958.1990.tb00598.x
182.
Walker MS, DeMoss JA. Promoter sequence requirements for Fnr-dependent activation of transcription of the narGHJI operon. Molecular Microbiology. 1991;5: 353–360. doi:10.1111/j.1365-2958.1991.tb02116.x
183.
Spiro S, Guest JR. Regulation and over-expression of the fnr gene of Escherichia coli. Journal of General Microbiology. 1987;133: 3279–3288. doi:10.1099/00221287-133-12-3279
184.
Sharrocks AD, Green J, Guest JR. FNR activates and represses transcription in vitro. Proceedings Biological Sciences. 1991;245: 219–226. doi:10.1098/rspb.1991.0113
185.
Ziegelhoffer EC, Kiley PJ. In vitro analysis of a constitutively active mutant form of the Escherichia coli global transcription factor FNR. Journal of Molecular Biology. 1995;245: 351–361. doi:10.1006/jmbi.1994.0029
186.
Park SJ, Tseng CP, Gunsalus RP. Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: Role of ArcA and Fnr. Molecular Microbiology. 1995;15: 473–482. doi:10.1111/j.1365-2958.1995.tb02261.x
187.
Williams R, Bell A, Sims G, Busby S. The role of two surface exposed loops in transcription activation by the Escherichia coli CRP and FNR proteins. Nucleic Acids Research. 1991;19: 6705–6712. doi:10.1093/nar/19.24.6705
188.
Spiro S. The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek. 1994;66: 23–36. doi:10.1007/BF00871630
189.
Spiro S, Gaston KL, Bell AI, Roberts RE, Busby SJ, Guest JR. Interconversion of the DNA-binding specificities of two related transcription regulators, CRP and FNR. Molecular Microbiology. 1990;4: 1831–1838. doi:10.1111/j.1365-2958.1990.tb02031.x
190.
Sawers G, Kaiser M, Sirko A, Freundlich M. Transcriptional activation by FNR and CRP: Reciprocity of binding-site recognition. Molecular Microbiology. 1997;23: 835–845. doi:10.1046/j.1365-2958.1997.2811637.x
191.
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research. 1994;22: 4673–4680. doi:10.1093/nar/22.22.4673
192.
Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987;4: 406–425. doi:10.1093/oxfordjournals.molbev.a040454
193.
Felsenstein J. CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution; International Journal of Organic Evolution. 1985;39: 783–791. doi:10.1111/j.1558-5646.1985.tb00420.x
194.
Page RD. TreeView: An application to display phylogenetic trees on personal computers. Computer applications in the biosciences: CABIOS. 1996;12: 357–358. doi:10.1093/bioinformatics/12.4.357
195.
Van Spanning RJM, De Boer APN, Reijnders WNM, Westerhoff HV, Stouthamer AH, Van Der Oost J. FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Molecular Microbiology. 1997;23: 893–907. doi:10.1046/j.1365-2958.1997.2801638.x
196.
Frías JE, Mérida A, Herrero A, Martín-Nieto J, Flores E. General distribution of the nitrogen control gene ntcA in cyanobacteria. Journal of Bacteriology. 1993;175: 5710–5713. doi:10.1128/jb.175.17.5710-5713.1993
197.
Van Spanning RJ, De Boer AP, Reijnders WN, Spiro S, Westerhoff HV, Stouthamer AH, et al. Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS letters. 1995;360: 151–154. doi:10.1016/0014-5793(95)00091-m
198.
Ye RW, Haas D, Ka JO, Krishnapillai V, Zimmermann A, Baird C, et al. Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. Journal of Bacteriology. 1995;177: 3606–3609. doi:10.1128/jb.177.12.3606-3609.1995
199.
Arai H, Igarashi Y, Kodama T. Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS letters. 1995;371: 73–76. doi:10.1016/0014-5793(95)00885-d
200.
Batut J, Daveran-Mingot ML, David M, Jacobs J, Garnerone AM, Kahn D. fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. The EMBO journal. 1989;8: 1279–1286. doi:10.1002/j.1460-2075.1989.tb03502.x
201.
Irvine AS, Guest JR. Lactobacillus casei contains a member of the CRP-FNR family. Nucleic Acids Research. 1993;21: 753. doi:10.1093/nar/21.3.753
202.
Tomura D, Obika K, Fukamizu A, Shoun H. Nitric oxide reductase cytochrome P-450 gene, CYP 55, of the fungus Fusarium oxysporum containing a potential binding-site for FNR, the transcription factor involved in the regulation of anaerobic growth of Escherichia coli. Journal of Biochemistry. 1994;116: 88–94. doi:10.1093/oxfordjournals.jbchem.a124508
203.
Anthamatten D, Scherb B, Hennecke H. Characterization of a fixLJ-regulated Bradyrhizobium japonicum gene sharing similarity with the Escherichia coli fnr and Rhizobium meliloti fixK genes. Journal of Bacteriology. 1992;174: 2111–2120. doi:10.1128/jb.174.7.2111-2120.1992
204.
Tosques IE, Shi J, Shapleigh JP. Cloning and characterization of nnrR, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. Journal of Bacteriology. 1996;178: 4958–4964. doi:10.1128/jb.178.16.4958-4964.1996
205.
Winteler HV, Haas D. The homologous regulators ANR of Pseudomonas aeruginosa and FNR of Escherichia coli have overlapping but distinct specificities for anaerobically inducible promoters. Microbiology (Reading, England). 1996;142 ( Pt 3): 685–693. doi:10.1099/13500872-142-3-685
206.
Cuypers H, Zumft WG. Anaerobic control of denitrification in Pseudomonas stutzeri escapes mutagenesis of an fnr-like gene. Journal of Bacteriology. 1993;175: 7236–7246. doi:10.1128/jb.175.22.7236-7246.1993
207.
Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiological Reviews. 1989;53: 450–490. doi:10.1128/mr.53.4.450-490.1989
208.
Iuchi S, Matsuda Z, Fujiwara T, Lin EC. The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Molecular Microbiology. 1990;4: 715–727. doi:10.1111/j.1365-2958.1990.tb00642.x
209.
Iuchi S, Lin EC. Purification and phosphorylation of the Arc regulatory components of Escherichia coli. Journal of Bacteriology. 1992;174: 5617–5623. doi:10.1128/jb.174.17.5617-5623.1992
210.
Unden G, Becker S, Bongaerts J, Schirawski J, Six S. Oxygen regulated gene expression in facultatively anaerobic bacteria. Antonie Van Leeuwenhoek. 1994;66: 3–22. doi:10.1007/BF00871629
211.
Lynch AS, Lin EC. Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: Characterization of DNA binding at target promoters. Journal of Bacteriology. 1996;178: 6238–6249. doi:10.1128/jb.178.21.6238-6249.1996
212.
Tseng CP, Albrecht J, Gunsalus RP. Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli. Journal of Bacteriology. 1996;178: 1094–1098. doi:10.1128/jb.178.4.1094-1098.1996
213.
Stewart V. Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Molecular Microbiology. 1993;9: 425–434. doi:10.1111/j.1365-2958.1993.tb01704.x
214.
Rabin RS, Stewart V. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. Journal of Bacteriology. 1993;175: 3259–3268. doi:10.1128/jb.175.11.3259-3268.1993
215.
Cavicchioli R, Chiang RC, Kalman LV, Gunsalus RP. Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation. Molecular Microbiology. 1996;21: 901–911. doi:10.1046/j.1365-2958.1996.491422.x
216.
Tyson KL, Cole JA, Busby SJ. Nitrite and nitrate regulation at the promoters of two Escherichia coli operons encoding nitrite reductase: Identification of common target heptamers for both NarP- and NarL-dependent regulation. Molecular Microbiology. 1994;13: 1045–1055. doi:10.1111/j.1365-2958.1994.tb00495.x
217.
Zennaro E, Ciabatti I, Cutruzzola F, D’Alessandro R, Silvestrini MC. The nitrite reductase gene of Pseudomonas aeruginosa: Effect of growth conditions on the expression and construction of a mutant by gene disruption. FEMS microbiology letters. 1993;109: 243–250. doi:10.1016/0378-1097(93)90027-y
218.
Körner H, Zumft WG. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Applied and Environmental Microbiology. 1989;55: 1670–1676. doi:10.1128/AEM.55.7.1670-1676.1989
219.
Kaiser M, Sawers G. Overlapping promoters modulate Fnr- and ArcA-dependent anaerobic transcriptional activation of the focApfl operon in Escherichia coli. Microbiology (Reading, England). 1997;143 ( Pt 3): 775–783. doi:10.1099/00221287-143-3-775
220.
Bongaerts J, Zoske S, Weidner U, Unden G. Transcriptional regulation of the proton translocating NADH dehydrogenase genes (nuoA-N) of Escherichia coli by electron acceptors, electron donors and gene regulators. Molecular Microbiology. 1995;16: 521–534. doi:10.1111/j.1365-2958.1995.tb02416.x
221.
Cuypers H, Jürgen B, Zumft WG. Multiple nosZ promoters and anaerobic expression of nos genes necessary for Pseudomonas stutzeri nitrous oxide reductase and assembly of its copper centers. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1995;1264: 183–190. doi:10.1016/0167-4781(95)00128-4
222.
Zumft W. Diversity of gene organization and enzymes of denitrification. Beijerinck Centennial Microbial Physiology and Gene Regulation: Emerging Principles and Applications. Den Haag: Delft University Press; 1995. pp. 122–123. Available: https://repository.tudelft.nl/islandora/object/uuid:e30b10c4-0fad-4517-8874-5b3208e18f6e
223.
Kawasaki S, Arai H, Kodama T, Igarashi Y. Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: Sequencing and identification of a locus for heme d1 biosynthesis. Journal of Bacteriology. 1997;179: 235–242. doi:10.1128/jb.179.1.235-242.1997
224.
Thompson I, Ferguson S, Baker S. Variation within Paracoccus denitrificans and revival of the species Thiosphaera pantotropha as Paracoccus pantotrophus comb. nov. 1997.
225.
Robertson LA, Kuenen J. Thiosphaera pantotropha gen. Nov. Sp. Nov., a Facultatively Anaerobic, Facultatively Autotrophic Sulphur Bacterium. Microbiology,. 1983;129: 2847–2855. doi:10.1099/00221287-129-9-2847
226.
Dohler K, Huss VAR, Zumft WG. Transfer of Pseudomonas perfectomarina Baumann, Bowditch, Baumann, and Beaman 1983 to Pseudomonas stutzeri (Lehmann and Neumann 1896) Sijderius 1946. International Journal of Systematic Bacteriology. 1987;37: 1–3. doi:10.1099/00207713-37-1-1
227.
Holloway BW, Krishnapillai V, Morgan AF. Chromosomal genetics of Pseudomonas. Microbiological Reviews. 1979;43: 73–102. doi:10.1128/mr.43.1.73-102.1979
228.
Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33: 103–119. doi:10.1016/0378-1119(85)90120-9
229.
Hanahan D. Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology. 1983;166: 557–580. doi:10.1016/s0022-2836(83)80284-8
230.
Simon R, Priefer U, Pühler A. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Bio/Technology. 1983;1: 784–791. doi:10.1038/nbt1183-784
231.
Vishniac W, Santer M. The thiobacilli. Bacteriological Reviews. 1957;21: 195–213. doi:10.1128/br.21.3.195-213.1957
232.
Burnell JN, John P, Whatley FR. The reversibility of active sulphate transport in membrane vesicles of Paracoccus denitrificans. The Biochemical Journal. 1975;150: 527–536. doi:10.1042/bj1500527
233.
Pope NR, Cole JA. Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli. Journal of General Microbiology. 1982;128: 219–222. doi:10.1099/00221287-128-1-219
234.
Cole JA, Coleman KJ, Compton BE, Kavanagh BM, Keevil CW. Nitrite and ammonia assimilation by anaerobic continuous cultures of Escherichia coli. Journal of General Microbiology. 1974;85: 11–22. doi:10.1099/00221287-85-1-11
235.
Boer HA de, Comstock LJ, Vasser M. The tac promoter: A functional hybrid derived from the trp and lac promoters. Proceedings of the National Academy of Sciences of the United States of America. 1983;80: 21–25. doi:10.1073/pnas.80.1.21
236.
Scopes RK. Protein Purification: Principles and Practice. 1987. Available: https://www.springer.com/gp/book/9781475719574
237.
Sambrook J, Fritsch E, Maniatis T. Molecular cloning: A laboratory manual: Vol. 2. 2. ed. S.l.: Cold Spring Harbor; 1989. Available: https://www.worldcat.org/title/molecular-cloning-vol-2-a-laboratory-manual/oclc/730815487
238.
Goodhew CF, Pettigrew GW, Devreese B, Beeumen jozef, Spanning RJM, Baker SC, et al. The cytochromes c -550 of Paracoccus denitrificans and Thiosphaera pantotropha : A need for re-evaluation of the history of paracoccus cultures. FEMS Microbiology Letters. 1996;137: 95–101. doi:10.1111/j.1574-6968.1996.tb08089.x
239.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72: 248–254. doi:10.1006/abio.1976.9999
240.
Moir J. Aspects of electron transport in Thiosphaera pantotropha and Paracoccus denitrificans. PhD thesis, University of Oxford. 1993. Available: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386635
241.
Donald Nicholas DJ, Nason A. Determination of nitrate and nitrite. Methods in Enzymology. Elsevier; 1957. pp. 981–984. doi:10.1016/S0076-6879(57)03489-8
242.
Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research. 1979;7: 1513–1523. doi:10.1093/nar/7.6.1513
243.
Mierendorf RC, Pfeffer D. Direct sequencing of denatured plasmid DNA. Methods in Enzymology. 1987;152: 556–562. doi:10.1016/0076-6879(87)52061-4
244.
Cohen SN, Chang AC, Hsu L. Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proceedings of the National Academy of Sciences of the United States of America. 1972;69: 2110–2114. doi:10.1073/pnas.69.8.2110
245.
Clark JM. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Research. 1988;16: 9677–9686. doi:10.1093/nar/16.20.9677
246.
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 1977;74: 5463–5467. doi:10.1073/pnas.74.12.5463
247.
Kretz KA, O’Brien JS. Direct sequencing of polymerase chain reaction products from low melting temperature agarose. Methods in Enzymology. 1993;218: 72–79. doi:10.1016/0076-6879(93)18009-2
248.
Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research. 1984;12: 387–395. doi:10.1093/nar/12.1part1.387
249.
Chattopadhyay N, Kher R, Godbole M. Inexpensive SDS/phenol method for RNA extraction from tissues. BioTechniques. 1993;15: 24–26.
250.
251.
Engler-Blum G, Meier M, Frank J, Müller GA. Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Analytical Biochemistry. 1993;210: 235–244. doi:10.1006/abio.1993.1189
252.
Frohman MA. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: Thermal RACE. Methods in Enzymology. 1993;218: 340–356. doi:10.1016/0076-6879(93)18026-9
253.
Weeg-Aerssens E, Wu WS, Ye RW, Tiedje JM, Chang CK. Purification of cytochrome cd1 nitrite reductase from Pseudomonas stutzeri JM300 and reconstitution with native and synthetic heme d1. The Journal of Biological Chemistry. 1991;266: 7496–7502. Available: https://www.jbc.org/article/S0021-9258(20)89474-5/pdf
254.
Hole UH, Vollack K-U, Zumft WG, Eisenmann E, Siddiqui RA, Friedrich B, et al. Characterization of the membranous denitrification enzymes nitrite reductase (cytochrome cd 1 ) and copper-containing nitrous oxide reductase from Thiobacillus denitrificans. Archives of Microbiology. 1996;165: 55–61. doi:10.1007/s002030050296
255.
Heijne G von. A new method for predicting signal sequence cleavage sites. Nucleic Acids Research. 1986;14: 4683–4690. doi:10.1093/nar/14.11.4683
256.
Nielsen H, Engelbrecht J, Brunak S, Heijne G von. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering. 1997;10: 1–6. doi:10.1093/protein/10.1.1
257.
Barton GJ. ALSCRIPT: A tool to format multiple sequence alignments. Protein Engineering. 1993;6: 37–40. doi:10.1093/protein/6.1.37
258.
Appel RD, Bairoch A, Hochstrasser DF. A new generation of information retrieval tools for biologists: The example of the ExPASy WWW server. Trends in Biochemical Sciences. 1994;19: 258–260. doi:10.1016/0968-0004(94)90153-8
259.
Steinrücke P, Ludwig B. Genetics of Paracoccus denitrificans. FEMS microbiology reviews. 1993;10: 83–117. doi:10.1016/0378-1097(93)90505-v
260.
Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. Journal of Bacteriology. 1993;175: 3303–3316. doi:10.1128/jb.175.11.3303-3316.1993
261.
Klug G. A DNA sequence upstream of the puf operon of Rhodobacter capsulatus is involved in its oxygen-dependent regulation and functions as a protein binding site. Molecular & general genetics: MGG. 1991;226: 167–176. doi:10.1007/BF00273600
262.
Olsen GJ, Woese CR, Overbeek R. The winds of (evolutionary) change: Breathing new life into microbiology. Journal of Bacteriology. 1994;176: 1–6. doi:10.1128/jb.176.1.1-6.1994
263.
Fox GE, Wisotzkey JD, Jurtshuk P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic Bacteriology. 1992;42: 166–170. doi:10.1099/00207713-42-1-166
264.
Baker SC, Saunders NF, Willis AC, Ferguson SJ, Hajdu J, Fülöp V. Cytochrome cd1 structure: Unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds. Journal of Molecular Biology. 1997;269: 440–455. doi:10.1006/jmbi.1997.1070
265.
Wallace CJ, Clark-Lewis I. Functional role of heme ligation in cytochrome c. Effects of replacement of methionine 80 with natural and non-natural residues by semisynthesis. The Journal of Biological Chemistry. 1992;267: 3852–3861. Available: https://www.jbc.org/article/S0021-9258(19)50604-4/pdf
266.
Dawson JH, Bracete AM, Huff AM, Kadkhodayan S, Zeitler CM, Sono M, et al. The active site structure of E. Coli HPII catalase. Evidence favoring coordination of a tyrosinate proximal ligand to the chlorin iron. FEBS letters. 1991;295: 123–126. doi:10.1016/0014-5793(91)81401-s
267.
Nagai M, Yoneyama Y. Reduction of methemoglobins M Hyde Park, M Saskatoon, and M Milwaukee by ferredoxin and ferredoxin-nicotinamide adenine dinucleotide phosphate reductase system. The Journal of Biological Chemistry. 1983;258: 14379–14384. doi:10.1016/S0021-9258(17)43872-5
268.
Hildebrand DP, Burk DL, Maurus R, Ferrer JC, Brayer GD, Mauk AG. The proximal ligand variant His93Tyr of horse heart myoglobin. Biochemistry. 1995;34: 1997–2005. doi:10.1021/bi00006a021
269.
Andersson LA, Johnson AK, Simms MD, Willingham TR. Comparative analysis of catalases: Spectral evidence against heme-bound water for the solution enzymes. FEBS letters. 1995;370: 97–100. doi:10.1016/0014-5793(95)00651-o
270.
Silvestrini MC, Cutruzzolà F, D’Alessandro R, Brunori M, Fochesato N, Zennaro E. Expression of Pseudomonas aeruginosa nitrite reductase in Pseudomonas putida and characterization of the recombinant protein. The Biochemical Journal. 1992;285 ( Pt 2): 661–666. doi:10.1042/bj2850661
271.
Iobbi-Nivol C, Crooke H, Griffiths L, Grove J, Hussain H, Pommier J, et al. A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS microbiology letters. 1994;119: 89–94. doi:10.1111/j.1574-6968.1994.tb06872.x
272.
Hitti YS, Bertino AM. Proteinase K and T4 DNA polymerase facilitate the blunt-end subcloning of PCR products. BioTechniques. 1994;16: 802–805.
273.
Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, et al. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48: 119–131. doi:10.1016/0378-1119(86)90358-6
274.
Gronenborn B. Overproduction of phage lambda repressor under control of the lac promotor of Escherichia coli. Molecular & general genetics: MGG. 1976;148: 243–250. doi:10.1007/BF00332898
275.
Derbyshire KM, Willetts NS. Mobilization of the non-conjugative plasmid RSF1010: A genetic analysis of its origin of transfer. Molecular & general genetics: MGG. 1987;206: 154–160. doi:10.1007/BF00326551
276.
Darwin AJ, Stewart V. Nitrate and nitrite regulation of the Fnr-dependent aeg-46.5 promoter of Escherichia coli K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site. Journal of Molecular Biology. 1995;251: 15–29. doi:10.1006/jmbi.1995.0412
277.
Thöny-Meyer L, Fischer F, Künzler P, Ritz D, Hennecke H. Escherichia coli genes required for cytochrome c maturation. Journal of Bacteriology. 1995;177: 4321–4326. doi:10.1128/jb.177.15.4321-4326.1995
278.
Darie S, Gunsalus RP. Effect of heme and oxygen availability on hemA gene expression in Escherichia coli: Role of the fnr, arcA, and himA gene products. Journal of Bacteriology. 1994;176: 5270–5276. doi:10.1128/jb.176.17.5270-5276.1994
279.
Woodard SI, Dailey HA. Regulation of heme biosynthesis in Escherichia coli. Archives of Biochemistry and Biophysics. 1995;316: 110–115. doi:10.1006/abbi.1995.1016
280.
Page MD, Ferguson SJ. Apo forms of cytochrome c550 and cytochrome cd1 are translocated to the periplasm of Paracoccus denitrificans in the absence of haem incorporation caused either mutation or inhibition of haem synthesis. Molecular Microbiology. 1990;4: 1181–1192. doi:10.1111/j.1365-2958.1990.tb00693.x
281.
Grisshammer R, Oeckl C, Michel H. Expression in Escherichia coli of c-type cytochrome genes from Rhodopseudomonas viridis. Biochimica Et Biophysica Acta. 1991;1088: 183–190. doi:10.1016/0167-4781(91)90053-o
282.
Sambongi Y, Stoll R, Ferguson SJ. Alteration of haem-attachment and signal-cleavage sites for Paracoccus denitrificans cytochrome C550 probes pathway of c-type cytochrome biogenesis in Escherichia coli. Molecular Microbiology. 1996;19: 1193–1204. doi:10.1111/j.1365-2958.1996.tb02465.x
283.
Pollock WB, Voordouw G. Aerobic expression of the cyf gene encoding cytochrome c-553 from Desulfovibrio vulgaris Hildenborough in Escherichia coli. Microbiology (Reading, England). 1994;140 ( Pt 4): 879–887. doi:10.1099/00221287-140-4-879
284.
Fu R, Wall JD, Voordouw G. DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. Journal of Bacteriology. 1994;176: 344–350. doi:10.1128/jb.176.2.344-350.1994
285.
Ubbink M, Van Beeumen J, Canters GW. Cytochrome c550 from Thiobacillus versutus: Cloning, expression in Escherichia coli, and purification of the heterologous holoprotein. Journal of Bacteriology. 1992;174: 3707–3714. doi:10.1128/jb.174.11.3707-3714.1992
286.
Sambongi Y, Ferguson SJ. Synthesis of holo Paracoccus denitrificans cytochrome c550 requires targeting to the periplasm whereas that of holo Hydrogenobacter thermophilus cytochrome c552 does not. Implications for c-type cytochrome biogenesis. FEBS letters. 1994;340: 65–70. doi:10.1016/0014-5793(94)80174-6
287.
Garrett RM, Rajagopalan KV. Molecular cloning of rat liver sulfite oxidase. Expression of a eukaryotic Mo-pterin-containing enzyme in Escherichia coli. The Journal of Biological Chemistry. 1994;269: 272–276. Available: https://www.jbc.org/article/S0021-9258(17)42345-3/pdf
288.
Vidakovic MS, Fraczkiewicz G, Germanas JP. Expression and spectroscopic characterization of the hydrogenosomal [2Fe-2S] ferredoxin from the protozoan Trichomonas vaginalis. The Journal of Biological Chemistry. 1996;271: 14734–14739. doi:10.1074/jbc.271.25.14734
289.
Leung YC, Chan C, Reader JS, Willis AC, Spanning RJ van, Ferguson SJ, et al. The pseudoazurin gene from Thiosphaera pantotropha: Analysis of upstream putative regulatory sequences and overexpression in Escherichia coli. The Biochemical Journal. 1997;321 ( Pt 3): 699–705. doi:10.1042/bj3210699
290.
Viebrock A, Zumft WG. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. Journal of Bacteriology. 1988;170: 4658–4668. doi:10.1128/jb.170.10.4658-4668.1988
291.
Darwin A, Hussain H, Griffiths L, Grove J, Sambongi Y, Busby S, et al. Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: Not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Molecular Microbiology. 1993;9: 1255–1265. doi:10.1111/j.1365-2958.1993.tb01255.x
292.
Barber D, Parr SR, Greenwood C. Some spectral and steady-state kinetic properties of Pseudomonas cytochrome oxidase. The Biochemical Journal. 1976;157: 431–438. doi:10.1042/bj1570431
293.
Parr SR, Wilson MT, Greenwood C. The reaction of Pseudomonas aeurginosa cytochrome c oxidase with sodium metabisulphite. The Biochemical Journal. 1974;139: 273–276. doi:10.1042/bj1390273
294.
Yamamoto K, Uozumi T, Beppu T. The blue copper protein gene of Alcaligenes faecalis S-6 directs secretion of blue copper protein from Escherichia coli cells. Journal of Bacteriology. 1987;169: 5648–5652. doi:10.1128/jb.169.12.5648-5652.1987
295.
Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology. 1990;185: 60–89. doi:10.1016/0076-6879(90)85008-c
296.
Horio T, Higashi T, Yamanaka T, Matsubara H, Okunuki K. Purification and properties of cytochrome oxidase from Pseudomonas aeruginosa. The Journal of Biological Chemistry. 1961;236: 944–951. doi:10.1016/S0021-9258(18)64336-4
297.
Rothmel RK, Chakrabarty AM, Berry A, Darzins A. Genetic systems in Pseudomonas. Methods in Enzymology. 1991;204: 485–514. doi:10.1016/0076-6879(91)04025-j
298.
Hull HH, Wharton DC. Isoelectrophoretic characterization of Pseudomonas cytochrome oxidase/nitrite reductase and its heme d1-containing domain. Archives of Biochemistry and Biophysics. 1993;301: 85–90. doi:10.1006/abbi.1993.1118
299.
Sawers RG. Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli. Molecular Microbiology. 1991;5: 1469–1481. doi:10.1111/j.1365-2958.1991.tb00793.x
300.
Frey J, Bagdasarian MM, Bagdasarian M. Replication and copy number control of the broad-host-range plasmid RSF1010. Gene. 1992;113: 101–106. doi:10.1016/0378-1119(92)90675-f
301.
Unden G, Duchene A. On the role of cyclic AMP and the Fnr protein in Escherichia coli growing anaerobically. Archives of Microbiology. 1987;147: 195–200. doi:10.1007/BF00415284
302.
West SE, Iglewski BH. Codon usage in Pseudomonas aeruginosa. Nucleic Acids Research. 1988;16: 9323–9335. doi:10.1093/nar/16.19.9323
303.
Fujita M, Amemura A. In vitro interactions of Pseudomonas RNA polymerases with tac and RNA I promoters. Bioscience, Biotechnology, and Biochemistry. 1992;56: 1644–1648. doi:10.1271/bbb.56.1644
304.
Brunschwig E, Darzins A. A two-component T7 system for the overexpression of genes in Pseudomonas aeruginosa. Gene. 1992;111: 35–41. doi:10.1016/0378-1119(92)90600-t
305.
Ward BB, Cockcroft AR, Kilpatrick KA. Antibody and DNA probes for detection of nitrite reductase in seawater. Journal of General Microbiology. 1993;139: 2285–2293. doi:10.1099/00221287-139-9-2285
306.
Wülfing C, Plückthun A. Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli. Influence of folding catalysts. Journal of Molecular Biology. 1994;242: 655–669. doi:10.1006/jmbi.1994.1615
307.
Wong EY, Seetharam R, Kotts CE, Heeren RA, Klein BK, Braford SR, et al. Expression of secreted insulin-like growth factor-1 in Escherichia coli. Gene. 1988;68: 193–203. doi:10.1016/0378-1119(88)90021-2
308.
Kortt AA, Guthrie RE, Hinds MG, Power BE, Ivancic N, Caldwell JB, et al. Solution properties of Escherichia coli-expressed VH domain of anti-neuraminidase antibody NC41. Journal of Protein Chemistry. 1995;14: 167–178. doi:10.1007/BF01980329
309.
Cheng KJ, Ingram JM, Costerton JW. Alkaline phosphatase localization and spheroplast formation of Pseudomonas aeruginosa. Canadian Journal of Microbiology. 1970;16: 1319–1324. doi:10.1139/m70-218
310.
Matsushita K, Yamada M, Shinagawa E, Adachi O, Ameyama M. Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically. Journal of Bacteriology. 1980;141: 389–392. doi:10.1128/JB.141.1.389-392.1980
311.
Fujiwara T, Fukumori Y, Yamanaka T. A novel terminal oxidase, cytochrome baa3 purified from aerobically grown Pseudomonas aeruginosa: It shows a clear difference between resting state and pulsed state. Journal of Biochemistry. 1992;112: 290–298. doi:10.1093/oxfordjournals.jbchem.a123893
312.
Spanning R van. Genes involved in respiration of Paracoccus denitrificans. PhD thesis, VU Amsterdam. 1991. Available: https://research.vu.nl/en/publications/genes-involved-in-respiration-of-paracoccus-denitrificans
313.
Spanning RJ van, Wansell CW, Reijnders WN, Oltmann LF, Stouthamer AH. Mutagenesis of the gene encoding amicyanin of Paracoccus denitrificans and the resultant effect on methylamine oxidation. FEBS letters. 1990;275: 217–220. doi:10.1016/0014-5793(90)81475-4
314.
Van Spanning RJ, Wansell CW, Reijnders WN, Harms N, Ras J, Oltmann LF, et al. A method for introduction of unmarked mutations in the genome of Paracoccus denitrificans: Construction of strains with multiple mutations in the genes encoding periplasmic cytochromes c550, c551i, and c553i. Journal of Bacteriology. 1991;173: 6962–6970. doi:10.1128/jb.173.21.6962-6970.1991
315.
Vieira J, Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982;19: 259–268. doi:10.1016/0378-1119(82)90015-4
316.
Gilmour R, Goodhew CF, Pettigrew GW, Prazeres S, Moura I, Moura JJ. Spectroscopic characterization of cytochrome c peroxidase from Paracoccus denitrificans. The Biochemical Journal. 1993;294 ( Pt 3): 745–752. doi:10.1042/bj2940745
317.
Oost J van der, Schepper M, Stouthamer AH, Westerhoff HV, Spanning RJ van, Gier JW de. Reversed electron transfer through the bc1 complex enables a cytochrome c oxidase mutant (delta aa3/cbb3) of Paracoccus denitrificans to grow on methylamine. FEBS letters. 1995;371: 267–270. doi:10.1016/0014-5793(95)00900-t
318.
Van Spanning RJ, Wansell CW, De Boer T, Hazelaar MJ, Anazawa H, Harms N, et al. Isolation and characterization of the moxJ, moxG, moxI, and moxR genes of Paracoccus denitrificans: Inactivation of moxJ, moxG, and moxR and the resultant effect on methylotrophic growth. Journal of Bacteriology. 1991;173: 6948–6961. doi:10.1128/jb.173.21.6948-6961.1991
319.
Roufa D, Rhoads D. SeqAid II. Genetics Laboratory, Kansas State University, Kansas; 1989. Available: https://edutice.archives-ouvertes.fr/edutice-00001128/document
320.
Ronnberg M, Araiso T, Ellfolk N, Dunford HB. The reaction between reduced azurin and oxidized cytochrome c peroxidase from Pseudomonas aeruginosa. The Journal of Biological Chemistry. 1981;256: 2471–2474. doi:10.1016/S0021-9258(19)69805-4
321.
Palmedo G, Seither P, Körner H, Matthews JC, Burkhalter RS, Timkovich R, et al. Resolution of the nirD locus for heme d1 synthesis of cytochrome cd1 (respiratory nitrite reductase) from Pseudomonas stutzeri. European Journal of Biochemistry. 1995;232: 737–746. doi:10.1111/j.1432-1033.1995.0737a.x
322.
Zumft WG, Braun C, Cuypers H. Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex. European Journal of Biochemistry. 1994;219: 481–490. doi:10.1111/j.1432-1033.1994.tb19962.x
323.
Bartnikas TB, Tosques IE, Laratta WP, Shi J, Shapleigh JP. Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. Journal of Bacteriology. 1997;179: 3534–3540. doi:10.1128/jb.179.11.3534-3540.1997
324.
Tosques IE, Kwiatkowski AV, Shi J, Shapleigh JP. Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. Journal of Bacteriology. 1997;179: 1090–1095. doi:10.1128/jb.179.4.1090-1095.1997
325.
Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979;18: 5294–5299. doi:10.1021/bi00591a005
326.
Griersen D. Gel Electrophoresis of Nucleic Acids A Practical Approach (Second Edition). 1991. p. 102. Available: https://linkinghub.elsevier.com/retrieve/pii/0307441291900416
327.
Brosius J, Dull TJ, Noller HF. Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 1980;77: 201–204. doi:10.1073/pnas.77.1.201
328.
Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 1978;75: 4801–4805. doi:10.1073/pnas.75.10.4801
329.
Runar Ra S, Saris PE. Characterization of prokaryotic mRNAs by RT-PCR. BioTechniques. 1995;18: 792–795.
330.
Yu P-L, Hohn B, Falk H, Drews G. Molecular cloning of the ribosomal RNA genes of the photosynthetic bacterium Rhodopseudomonas capsulata. Molecular and General Genetics MGG. 1982;188: 392–398. doi:10.1007/BF00330039
331.
Chow CT. Properties of ribonucleic acids from photosynthetic and heterotrophic Rhodospirillum rubrum. Canadian Journal of Microbiology. 1976;22: 228–236. doi:10.1139/m76-031
332.
Marrs B, Kaplan S. 23 s precursor ribosomal RNA of Rhodopseudomonas spheroides. Journal of Molecular Biology. 1970;49: 297–317. doi:10.1016/0022-2836(70)90247-0
333.
Grienenberger JM, Simon D. Structure and biosynthesis of the ribosomal ribonucleic acids from the oncogenic bacterium Agrobacterium tumefaciens. The Biochemical Journal. 1975;149: 23–30. doi:10.1042/bj1490023
334.
Farnham PJ, Platt T. A model for transcription termination suggested by studies on the trp attenuator in vitro using base analogs. Cell. 1980;20: 739–748. doi:10.1016/0092-8674(80)90320-7
335.
Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research. 1984;12: 7035–7056. doi:10.1093/nar/12.18.7035
336.
Hawley DK, McClure WR. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Research. 1983;11: 2237–2255. doi:10.1093/nar/11.8.2237
337.
Eiglmeier K, Honoré N, Iuchi S, Lin EC, Cole ST. Molecular genetic analysis of FNR-dependent promoters. Molecular Microbiology. 1989;3: 869–878. doi:10.1111/j.1365-2958.1989.tb00236.x
338.
Siebenlist U, Simpson RB, Gilbert W. E. Coli RNA polymerase interacts homologously with two different promoters. Cell. 1980;20: 269–281. doi:10.1016/0092-8674(80)90613-3
339.
Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OM, Spanning RJ van. Molecular genetics of the genus Paracoccus: Metabolically versatile bacteria with bioenergetic flexibility. Microbiology and molecular biology reviews: MMBR. 1998;62: 1046–1078. doi:10.1128/MMBR.62.4.1046-1078.1998
340.
Frey J, Mudd EA, Krisch HM. A bacteriophage T4 expression cassette that functions efficiently in a wide range of gram-negative bacteria. Gene. 1988;62: 237–247. doi:10.1016/0378-1119(88)90562-8
341.
Gao JG, Gussin GN. RNA polymerases from Pseudomonas aeruginosa and Pseudomonas syringae respond to Escherichia coli activator proteins. Journal of Bacteriology. 1991;173: 394–397. doi:10.1128/jb.173.1.394-397.1991
342.
Schmitt MP, Holmes RK. Cloning, sequence, and footprint analysis of two promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron. Journal of Bacteriology. 1994;176: 1141–1149. doi:10.1128/JB.176.4.1141-1149.1994
343.
Beynon J, Cannon M, Buchanan-Wollaston V, Cannon F. The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell. 1983;34: 665–671. doi:10.1016/0092-8674(83)90399-9
344.
Römermann D, Warrelmann J, Bender RA, Friedrich B. An rpoN-like gene of Alcaligenes eutrophus and Pseudomonas facilis controls expression of diverse metabolic pathways, including hydrogen oxidation. Journal of Bacteriology. 1989;171: 1093–1099. doi:10.1128/jb.171.2.1093-1099.1989
345.
Kustu S, Santero E, Keener J, Popham D, Weiss D. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiological Reviews. 1989;53: 367–376. doi:10.1128/mr.53.3.367-376.1989
346.
Thony B, Hennecke H. The −24/−12 promoter comes of age. FEMS Microbiology Letters. 1989;63: 341–357. doi:10.1111/j.1574-6968.1989.tb03404.x
347.
Cuypers H, Zumft W. Pseudomonas: Molecular Biology and Biotechnology. American Society for Microbiology; 1992. pp. 188–197. Available: https://www.worldcat.org/title/pseudomonas-molecular-biology-and-biotechnology/oclc/25411667
348.
Totten PA, Lara JC, Lory S. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. Journal of Bacteriology. 1990;172: 389–396. doi:10.1128/jb.172.1.389-396.1990
349.
Roemermann D, Lohmeyer M, Friedrich CG, Friedrich B. Pleotropic mutants from Alcaligenes eutrophus defective in the metabolism of hydrogen, nitrate, urea, and fumarate. Archives of Microbiology. 1988;149: 471–475. doi:10.1007/BF00425590
350.
Savioz A, Zimmermann A, Haas D. Pseudomonas aeruginosa promoters which contain a conserved GG-N10-GC motif but appear to be RpoN-independent. Molecular & general genetics: MGG. 1993;238: 74–80. doi:10.1007/BF00279533
351.
Kullik I, Fritsche S, Knobel H, Sanjuan J, Hennecke H, Fischer HM. Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN). Journal of Bacteriology. 1991;173: 1125–1138. doi:10.1128/jb.173.3.1125-1138.1991
352.
Van Hove B, Staudenmaier H, Braun V. Novel two-component transmembrane transcription control: Regulation of iron dicitrate transport in Escherichia coli K-12. Journal of Bacteriology. 1990;172: 6749–6758. doi:10.1128/jb.172.12.6749-6758.1990
353.
Miller VL, Taylor RK, Mekalanos JJ. Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell. 1987;48: 271–279. doi:10.1016/0092-8674(87)90430-2
354.
Cutruzzolà F, Arese M, Grasso S, Bellelli A, Brunori M. Mutagenesis of nitrite reductase from Pseudomonas aeruginosa: Tyrosine-10 in the c heme domain is not involved in catalysis. FEBS letters. 1997;412: 365–369. doi:10.1016/s0014-5793(97)00583-8
355.
Ghosh M, Anthony C, Harlos K, Goodwin MG, Blake C. The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A. Structure (London, England: 1993). 1995;3: 177–187. doi:10.1016/s0969-2126(01)00148-4
356.
Xia Z, Dai W, Zhang Y, White SA, Boyd GD, Mathews FS. Determination of the gene sequence and the three-dimensional structure at 2.4 angstroms resolution of methanol dehydrogenase from Methylophilus W3A1. Journal of Molecular Biology. 1996;259: 480–501. doi:10.1006/jmbi.1996.0334
357.
Ito N, Phillips SE, Stevens C, Ogel ZB, McPherson MJ, Keen JN, et al. Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Nature. 1991;350: 87–90. doi:10.1038/350087a0
358.
Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature. 1996;379: 369–374. doi:10.1038/379369a0
359.
Gaskell A, Crennell S, Taylor G. The three domains of a bacterial sialidase: A beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure (London, England: 1993). 1995;3: 1197–1205. doi:10.1016/s0969-2126(01)00255-6
360.
Faber HR, Groom CR, Baker HM, Morgan WT, Smith A, Baker EN. 1.8 A crystal structure of the C-terminal domain of rabbit serum haemopexin. Structure (London, England: 1993). 1995;3: 551–559. doi:10.1016/s0969-2126(01)00189-7
361.
Li J, Brick P, O’Hare MC, Skarzynski T, Lloyd LF, Curry VA, et al. Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure (London, England: 1993). 1995;3: 541–549. doi:10.1016/s0969-2126(01)00188-5
362.
Russell RB, Barton GJ. Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels. Proteins. 1992;14: 309–323. doi:10.1002/prot.340140216
363.
Cozier GE, Giles IG, Anthony C. The structure of the quinoprotein alcohol dehydrogenase of Acetobacter aceti modelled on that of methanol dehydrogenase from Methylobacterium extorquens. The Biochemical Journal. 1995;308 ( Pt 2): 375–379. doi:10.1042/bj3080375
364.
Garcia-Higuera I, Fenoglio J, Li Y, Lewis C, Panchenko MP, Reiner O, et al. Folding of proteins with WD-repeats: Comparison of six members of the WD-repeat superfamily to the G protein beta subunit. Biochemistry. 1996;35: 13985–13994. doi:10.1021/bi9612879
365.
Bork P, Doolittle RF. Drosophila kelch motif is derived from a common enzyme fold. Journal of Molecular Biology. 1994;236: 1277–1282. doi:10.1016/0022-2836(94)90056-6
366.
Murzin AG. Structural principles for the propeller assembly of beta-sheets: The preference for seven-fold symmetry. Proteins. 1992;14: 191–201. doi:10.1002/prot.340140206
367.
Ludwig W, Mittenhuber G, Friedrich CG. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. International Journal of Systematic Bacteriology. 1993;43: 363–367. doi:10.1099/00207713-43-2-363
368.
Beijerinck M, Minkman D. Bildung und verbrauch von stickoxydul durch bakterien. Zentralbl Bakteriol II. 1910;25: 30–63.
369.
Rainey PB, Thompson IP, Palleroni NJ. Genome and fatty acid analysis of Pseudomonas stutzeri. International Journal of Systematic Bacteriology. 1994;44: 54–61. doi:10.1099/00207713-44-1-54
370.
Thompson IP, Bailey MJ, Ellis RJ, Purdy KJ. Subgrouping of bacterial populations by cellular fatty acid composition. FEMS Microbiology Letters. 1993;102: 75–84. doi:10.1111/j.1574-6968.1993.tb05798.x
371.
Katayama Y, Hiraishi A, Kuraishi H. Paracoccus thiocyanatus sp. Nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. Nov. With emendation of the genus. Microbiology (Reading, England). 1995;141 ( Pt 6): 1469–1477. doi:10.1099/13500872-141-6-1469